Analysis of the Protein Kinase A-Regulated Proteome of Cryptococcus neoformans Identifies a Role for the Ubiquitin-Proteasome Pathway in Capsule Formation
نویسندگان
چکیده
UNLABELLED The opportunistic fungal pathogen Cryptococcus neoformans causes life-threatening meningitis in immunocompromised individuals. The expression of virulence factors, including capsule and melanin, is in part regulated by the cyclic-AMP/protein kinase A (cAMP/PKA) signal transduction pathway. In this study, we investigated the influence of PKA on the composition of the intracellular proteome to obtain a comprehensive understanding of the regulation that underpins virulence. Through quantitative proteomics, enrichment and bioinformatic analyses, and an interactome study, we uncovered a pattern of PKA regulation for proteins associated with translation, the proteasome, metabolism, amino acid biosynthesis, and virulence-related functions. PKA regulation of the ubiquitin-proteasome pathway in C. neoformans showed a striking parallel with connections between PKA and protein degradation in chronic neurodegenerative disorders and other human diseases. Further investigation of proteasome function with the inhibitor bortezomib revealed an impact on capsule production as well as hypersusceptibility for strains with altered expression or activity of PKA. Parallel studies with tunicamycin also linked endoplasmic reticulum stress with capsule production and PKA. Taken together, the data suggest a model whereby expression of PKA regulatory and catalytic subunits and the activation of PKA influence proteostasis and the function of the endoplasmic reticulum to control the elaboration of the polysaccharide capsule. Overall, this study revealed both broad and conserved influences of the cAMP/PKA pathway on the proteome and identified proteostasis as a potential therapeutic target for the treatment of cryptococcosis. IMPORTANCE Fungi cause life-threatening diseases, but very few drugs are available to effectively treat fungal infections. The pathogenic fungus Cryptococcus neoformans causes a substantial global burden of life-threatening meningitis in patients suffering from HIV/AIDS. An understanding of the mechanisms by which fungi deploy virulence factors to cause disease is critical for developing new therapeutic approaches. We employed a quantitative proteomic approach to define the changes in the protein complement that occur upon modulating the cAMP signaling pathway that regulates virulence in C. neoformans. This approach identified a conserved role for cAMP signaling in the regulation of the ubiquitin-proteasome pathway and revealed a link between this pathway and elaboration of a major virulence determinant, the polysaccharide capsule. Targeting the ubiquitin-proteasome pathway opens new therapeutic options for the treatment of cryptococcosis.
منابع مشابه
Unveiling Protein Kinase A Targets in Cryptococcus neoformans Capsule Formation
The protein kinase A (PKA) signal transduction pathway has been associated with pathogenesis in many fungal species. Geddes and colleagues [mBio 7(1):e01862-15, 2016, doi:10.1128/mBio.01862-15] used quantitative proteomics approaches to define proteins with altered abundance during protein kinase A (PKA) activation and repression in the opportunistic human fungal pathogen Cryptococcus neoforman...
متن کاملTranscription factor Nrg1 mediates capsule formation, stress response, and pathogenesis in Cryptococcus neoformans.
The Cryptococcus neoformans NRG1 gene was identified using gene microarrays to define putative transcription factor genes regulated by the cyclic AMP (cAMP) signal transduction pathway. Disruption of NRG1 results in delayed capsule formation and mating, two phenotypes that are directly controlled by cAMP signaling. Putative targets of the Nrg1 transcription factor were identified using a second...
متن کاملPleiotropic Effects of Deubiquitinating Enzyme Ubp5 on Growth and Pathogenesis of Cryptococcus neoformans
Ubiquitination is a reversible protein modification that influences various cellular processes in eukaryotic cells. Deubiquitinating enzymes remove ubiquitin, maintain ubiquitin homeostasis and regulate protein degradation via the ubiquitination pathway. Cryptococcus neoformans is an important basidiomycete pathogen that causes life-threatening meningoencephalitis primarily in the immunocomprom...
متن کاملTranscriptional Regulation by Protein Kinase A in Cryptococcus neoformans
A defect in the PKA1 gene encoding the catalytic subunit of cyclic adenosine 5'-monophosphate (cAMP)-dependent protein kinase A (PKA) is known to reduce capsule size and attenuate virulence in the fungal pathogen Cryptococcus neoformans. Conversely, loss of the PKA regulatory subunit encoded by pkr1 results in overproduction of capsule and hypervirulence. We compared the transcriptomes between ...
متن کاملHrk1 Plays Both Hog1-Dependent and -Independent Roles in Controlling Stress Response and Antifungal Drug Resistance in Cryptococcus neoformans
The HOG (High Osmolarity Glycerol response) pathway plays a central role in controlling stress response, ergosterol biosynthesis, virulence factor production, and differentiation of Cryptococcus neoformans, which causes fatal fungal meningoencephalitis. Recent transcriptome analysis of the HOG pathway discovered a Hog1-regulated gene (CNAG_00130.2), encoding a putative protein kinase orthologou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016